Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Acc Chem Res ; 54(20): 3818-3827, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34612032

RESUMEN

Devising synthetic strategies to construct a covalent bond is a common research topic among synthetic chemists. A key driver of success is the high tunability of the conditions, including catalysts, reagents, solvents, and reaction temperature. Such flexibility of synthetic operations has allowed for the rapid exploration of a myriad of artificial synthetic transformations in recent decades. However, if we turn our attention to chemical reactions controlled in living cells, the situation is quite different; the number of hit substrates for the reaction-type is relatively small, while the crowded environment is chemically complex and inflexible to control.A specific objective of this Account is to introduce our chemical methylome analysis as an example of bridging the gap between chemistry and biology. Protein methylation, catalyzed by protein methyltransferases (MTases) using S-adenosyl-l-methionine (SAM or AdoMet) as a methyl donor, is a simple but important post-translational covalent modification. We aim to efficiently identify MTase substrates and methylation sites using activity-based protein profiling (ABPP) with propargylic Se-adenosyl-l-selenomethionine (ProSeAM, also called SeAdoYn). Specifically, we draw heavily from quantitative proteomics that yields information about the differences between two samples utilizing LC-MS/MS analysis. By exploiting the use of ProSeAM, we have prepared the requisite two samples for quantitative methylome analysis. The structural difference between ProSeAM and the parent SAM is so small that the quantity of modification of the protein substrate with this artificial cofactor reflects, to a large extent, levels of activity of the MTase of interest with SAM. First, we identified that the addition of exogenous recombinant MTase (methylation accel), a natural catalyst, enhances the generation of the corresponding propargylated product even in the cell lysate. Then, we applied the principle to isotope label-free quantification with HEK293T cell lysates. By comparing the intensity of LC-MS/MS signals in the absence and presence of the MTase, we have successfully correlated the MTase substrates. We have currently applied the concept to the stable isotope label-based quantification, SILAC (stable isotope labeling by amino acids in cell culture). The strategy merging ProSeAM/MTase/SILAC (PMS) is uniquely versatile and programmable. We can choose suitable cell lines, subcellular fractions (i.e.; whole lysate or mitochondria), and genotypes as required. In particular, we would like to emphasize that the use of cell lysates derived from disease-associated MTase knockouts (KOs) holds vast potential to discover functionally unknown but biologically important methylation events. By adding ProSeAM and a recombinant MTase to the lysates derived from KO cells, we successfully characterized unprecedented nonhistone substrates of several MTases. Furthermore, this chemoproteomic procedure can be applied to explore MTase inhibitors (methylation brake). The combined strategy with ProSeAM/inhibitor/SILAC (PIS) offers intriguing opportunities to explore nonhistone methylation inhibitors.Considering that SAM is the second most widely used enzyme-substrate following ATP, the interdisciplinary research between chemistry and biology using SAM analogs has a potentially huge impact on a wide range of research fields associated with biological methylation. We hope that this Account will help to further delineate the biological function of this important class of enzymatic reaction.


Asunto(s)
Metiltransferasas/metabolismo , Selenometionina/análogos & derivados , Biocatálisis , Metiltransferasas/química , Estructura Molecular , Selenometionina/análisis , Selenometionina/metabolismo
3.
Mol Cell ; 67(4): 550-565.e5, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28803780

RESUMEN

DNA methylation is an essential epigenetic mark in mammals that has to be re-established after each round of DNA replication. The protein UHRF1 is essential for this process; it has been proposed that the protein targets newly replicated DNA by cooperatively binding hemi-methylated DNA and H3K9me2/3, but this model leaves a number of questions unanswered. Here, we present evidence for a direct recruitment of UHRF1 by the replication machinery via DNA ligase 1 (LIG1). A histone H3K9-like mimic within LIG1 is methylated by G9a and GLP and, compared with H3K9me2/3, more avidly binds UHRF1. Interaction with methylated LIG1 promotes the recruitment of UHRF1 to DNA replication sites and is required for DNA methylation maintenance. These results further elucidate the function of UHRF1, identify a non-histone target of G9a and GLP, and provide an example of a histone mimic that coordinates DNA replication and DNA methylation maintenance.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , ADN Ligasa (ATP)/metabolismo , Metilación de ADN , Replicación del ADN , ADN/biosíntesis , Epigénesis Genética , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Proteínas Potenciadoras de Unión a CCAAT/química , Proteínas Potenciadoras de Unión a CCAAT/genética , ADN/genética , ADN Ligasa (ATP)/química , ADN Ligasa (ATP)/genética , Células Madre Embrionarias/enzimología , Células HEK293 , Células HeLa , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Lisina , Metilación , Ratones , Modelos Moleculares , Imitación Molecular , Mutación , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Transfección , Dominio Tudor , Ubiquitina-Proteína Ligasas
4.
Elife ; 52016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27244239

RESUMEN

Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs.


Asunto(s)
Antineoplásicos/farmacología , Diflunisal/farmacología , Inhibidores Enzimáticos/farmacología , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/tratamiento farmacológico , Ácido Salicílico/farmacología , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Acetilcoenzima A/antagonistas & inhibidores , Acetilcoenzima A/metabolismo , Acetilación/efectos de los fármacos , Animales , Antineoplásicos/química , Unión Competitiva , Dominio Catalítico , Línea Celular Tumoral , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Diflunisal/química , Inhibidores Enzimáticos/química , Células HEK293 , Humanos , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucocitos/efectos de los fármacos , Leucocitos/enzimología , Leucocitos/patología , Ratones , Ratones SCID , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Unión Proteica , Proteína 1 Compañera de Translocación de RUNX1/genética , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Ácido Salicílico/química , Transducción de Señal , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
5.
PLoS One ; 9(8): e105394, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25144183

RESUMEN

Lysine methylation has been extensively studied in histones, where it has been shown to provide specific epigenetic marks for the regulation of gene expression; however, the molecular mechanism and physiological function of lysine methylation in proteins other than histones remains to be fully addressed. To better understand the substrate diversity of lysine methylation, S-adenosylmethionine (SAM) derivatives with alkyne-moieties have been synthesized. A selenium-based SAM analog, propargylic Se-adenosyl-l-selenomethionine (ProSeAM), has a wide spectrum of reactivity against various lysine methyltransferases (KMTs) with sufficient stability to support enzymatic reactions in vitro. By using ProSeAM as a chemical probe for lysine methylation, we identified substrates for two seven-beta-strand KMTs, METTL21A and METTL10, on a proteomic scale in mammalian cells. METTL21A has been characterized as a heat shock protein (HSP)-70 methyltransferase. Mammalian METTL10 remains functionally uncharacterized, although its ortholog in yeast, See1, has been shown to methylate the translation elongation factor eEF1A. By using ProSeAM-mediated alkylation followed by purification and quantitative MS analysis, we confirmed that METTL21A labels HSP70 family proteins. Furthermore, we demonstrated that METTL10 also methylates the eukaryotic elongation factor EF1A1 in mammalian cells. Subsequent biochemical characterization revealed that METTL10 specifically trimethylates EF1A1 at lysine 318 and that siRNA-mediated knockdown of METTL10 decreases EF1A1 methylation levels in vivo. Thus, our study emphasizes the utility of the synthetic cofactor ProSeAM as a chemical probe for the identification of non-histone substrates of KMTs.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/química , Selenio/química , Animales , Células HEK293 , Humanos , Microscopía Fluorescente , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
Science ; 339(6116): 211-4, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23223453

RESUMEN

Concentrations of acetyl-coenzyme A and nicotinamide adenine dinucleotide (NAD(+)) affect histone acetylation and thereby couple cellular metabolic status and transcriptional regulation. We report that the ketone body d-ß-hydroxybutyrate (ßOHB) is an endogenous and specific inhibitor of class I histone deacetylases (HDACs). Administration of exogenous ßOHB, or fasting or calorie restriction, two conditions associated with increased ßOHB abundance, all increased global histone acetylation in mouse tissues. Inhibition of HDAC by ßOHB was correlated with global changes in transcription, including that of the genes encoding oxidative stress resistance factors FOXO3A and MT2. Treatment of cells with ßOHB increased histone acetylation at the Foxo3a and Mt2 promoters, and both genes were activated by selective depletion of HDAC1 and HDAC2. Consistent with increased FOXO3A and MT2 activity, treatment of mice with ßOHB conferred substantial protection against oxidative stress.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/metabolismo , Riñón/metabolismo , Estrés Oxidativo , Ácido 3-Hidroxibutírico/sangre , Ácido 3-Hidroxibutírico/farmacología , Acetilación , Animales , Restricción Calórica , Catalasa/metabolismo , Ayuno , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Células HEK293 , Inhibidores de Histona Desacetilasas/sangre , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Histonas/metabolismo , Humanos , Riñón/efectos de los fármacos , Peroxidación de Lípido , Metalotioneína/genética , Metalotioneína/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/genética , Regiones Promotoras Genéticas , ARN Interferente Pequeño , Superóxido Dismutasa/metabolismo , Transcripción Genética , Activación Transcripcional
7.
Nat Commun ; 3: 1072, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22990868

RESUMEN

Although heat-shock protein 70 (HSP70), an evolutionarily highly conserved molecular chaperone, is known to be post-translationally modified in various ways such as phosphorylation, ubiquitination and glycosylation, physiological significance of lysine methylation has never been elucidated. Here we identify dimethylation of HSP70 at Lys-561 by SETD1A. Enhanced HSP70 methylation was detected in various types of human cancer by immunohistochemical analysis, although the methylation was barely detectable in corresponding non-neoplastic tissues. Interestingly, methylated HSP70 predominantly localizes to the nucleus of cancer cells, whereas most of the HSP70 protein locates to the cytoplasm. Nuclear HSP70 directly interacts with Aurora kinase B (AURKB) in a methylation-dependent manner and promotes AURKB activity in vitro and in vivo. We also find that methylated HSP70 has a growth-promoting effect in cancer cells. Our findings demonstrate a crucial role of HSP70 methylation in human carcinogenesis.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasa B , Aurora Quinasas , Western Blotting , Células COS , Línea Celular Tumoral , Proliferación Celular , Chlorocebus aethiops , Humanos , Inmunohistoquímica , Inmunoprecipitación , Lisina , Metilación , Unión Proteica , Análisis de Matrices Tisulares
8.
Nature ; 464(7285): 121-5, 2010 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-20203611

RESUMEN

Sirtuins are NAD(+)-dependent protein deacetylases. They mediate adaptive responses to a variety of stresses, including calorie restriction and metabolic stress. Sirtuin 3 (SIRT3) is localized in the mitochondrial matrix, where it regulates the acetylation levels of metabolic enzymes, including acetyl coenzyme A synthetase 2 (refs 1, 2). Mice lacking both Sirt3 alleles appear phenotypically normal under basal conditions, but show marked hyperacetylation of several mitochondrial proteins. Here we report that SIRT3 expression is upregulated during fasting in liver and brown adipose tissues. During fasting, livers from mice lacking SIRT3 had higher levels of fatty-acid oxidation intermediate products and triglycerides, associated with decreased levels of fatty-acid oxidation, compared to livers from wild-type mice. Mass spectrometry of mitochondrial proteins shows that long-chain acyl coenzyme A dehydrogenase (LCAD) is hyperacetylated at lysine 42 in the absence of SIRT3. LCAD is deacetylated in wild-type mice under fasted conditions and by SIRT3 in vitro and in vivo; and hyperacetylation of LCAD reduces its enzymatic activity. Mice lacking SIRT3 exhibit hallmarks of fatty-acid oxidation disorders during fasting, including reduced ATP levels and intolerance to cold exposure. These findings identify acetylation as a novel regulatory mechanism for mitochondrial fatty-acid oxidation and demonstrate that SIRT3 modulates mitochondrial intermediary metabolism and fatty-acid use during fasting.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/enzimología , Mitocondrias/metabolismo , Sirtuina 3/metabolismo , Acetilación , Acil-CoA Deshidrogenasa de Cadena Larga/química , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Tejido Adiposo Pardo/enzimología , Tejido Adiposo Pardo/metabolismo , Animales , Regulación de la Temperatura Corporal , Restricción Calórica , Carnitina/análogos & derivados , Carnitina/metabolismo , Línea Celular , Frío , Ayuno/metabolismo , Humanos , Hipoglucemia/metabolismo , Hígado/enzimología , Hígado/metabolismo , Masculino , Espectrometría de Masas , Ratones , Oxidación-Reducción , Sirtuina 3/deficiencia , Sirtuina 3/genética , Triglicéridos/metabolismo , Regulación hacia Arriba
9.
Biochim Biophys Acta ; 1804(8): 1645-51, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20060508

RESUMEN

Sirtuins have emerged as important proteins in aging, stress resistance and metabolic regulation. Three sirtuins, SIRT3, 4 and 5, are located within the mitochondrial matrix. SIRT3 and SIRT5 are NAD(+)-dependent deacetylases that remove acetyl groups from acetyllysine-modified proteins and yield 2'-O-acetyl-ADP-ribose and nicotinamide. SIRT4 can transfer the ADP-ribose group from NAD(+) onto acceptor proteins. Recent findings reveal that a large fraction of mitochondrial proteins are acetylated and that mitochondrial protein acetylation is modulated by nutritional status. This and the identification of targets for SIRT3, 4 and 5 support the model that mitochondrial sirtuins are metabolic sensors that modulate the activity of metabolic enzymes via protein deacetylation or mono-ADP-ribosylation. Here, we review and discuss recent progress in the study of mitochondrial sirtuins and their targets.


Asunto(s)
Mitocondrias/metabolismo , Sirtuinas/metabolismo , Acetilación , Animales , Histona Desacetilasas del Grupo III/metabolismo , Humanos , Ratones , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , NAD/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Sirtuina 3/metabolismo
10.
Biochem Biophys Res Commun ; 374(1): 84-9, 2008 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-18602369

RESUMEN

Histone deacetylase 6 (HDAC6) is a multifunctional, cytosolic protein deacetylase that primarily acts on alpha-tubulin. Here we report that stable knockdown of HDAC6 expression causes a decrease in the steady-state level of receptor tyrosine kinases, such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor alpha, in A549 lung cancer cells. The decreased levels of in EGFR in HDAC6-knockdown cells, which correlated with increased acetylation of microtubules, were due to increased turnover of EGFR protein. Despite the decrease in EGFR levels, A549 cells lacking functional HDAC6 appeared to grow normally, probably due to increased expression of extracellular signal-regulated kinases 1 and 2. Indeed, HDAC6-knockdown cells were more sensitive than control cells to the MEK inhibitor U0126. These results suggest that HDAC6 inhibitors combined with inhibitors of growth factor signaling may be useful as cancer therapy.


Asunto(s)
Proliferación Celular , Histona Desacetilasas/fisiología , Neoplasias Pulmonares/enzimología , Microtúbulos/metabolismo , Acetilación , Butadienos/farmacología , Línea Celular Tumoral , Regulación hacia Abajo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Nitrilos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
12.
J Biol Chem ; 282(7): 4470-4478, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17172643

RESUMEN

Trichostatin A (TSA), a specific inhibitor of histone deacetylases (HDACs), induces acetylation of various non-histone proteins such as p53 and alpha-tubulin. We purified several acetylated proteins by the affinity to an anti-acetylated lysine (AcLys) antibody from cells treated with TSA and identified them by mass spectrometry. Here we report on acetylation of CFIm25, a component of mammalian cleavage factor Im (CF Im), and poly(A) polymerase (PAP), a polyadenylating enzyme for the pre-mRNA 3'-end. The residues acetylated in these proteins were mapped onto the regions required for interaction with each other. Whereas CBP acetylated these proteins, HDAC1, HDAC3, HDAC10, SIRT1, and SIRT2 were involved in in vivo deacetylation. Acetylation of the CFIm25 occurred depending on the cleavage factor complex formation. Importantly, the interaction between PAP and CF Im complex was decreased by acetylation. We also demonstrated that acetylation of PAP inhibited the nuclear localization of PAP by inhibiting the binding to the importin alpha/beta complex. These results suggest that CBP and HDACs regulate the 3'-end processing machinery and modulate the localization of PAP through the acetylation and deacetylation cycle.


Asunto(s)
Regiones no Traducidas 3'/metabolismo , Proteína de Unión a CREB/metabolismo , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , Acetilación/efectos de los fármacos , Animales , Células COS , Chlorocebus aethiops , Inhibidores Enzimáticos/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Polinucleotido Adenililtransferasa/metabolismo , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Sirtuina 1 , Sirtuina 2 , Sirtuinas/metabolismo , Tubulina (Proteína)/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas , Factores de Escisión y Poliadenilación de ARNm/metabolismo
13.
Prog Cell Cycle Res ; 5: 269-78, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14593721

RESUMEN

It is becoming increasingly clear that reversible acetylation of proteins is a signal directly controlling the activity of key cellular regulators. The enzymes controlling protein acetylation were identified as histone acetyltransferases (HATs) and histone deacetylases (HDACs). Following the discovery of HATs and HDACs, a number of non-histone proteins have been identified as substrates for these enzymes. HDACs play important roles in transcriptional regulation and pathogenesis of cancer through removing acetyl groups from histones and other transcriptional regulators. HDAC inhibitors case cell cycle arrest, differentiation and/or apoptosis of many tumors, suggesting their usefulness for chemotherapy and differentiation therapy. Since recent studies have revealed that HDACs are structurally and functionally diverse, it should be possible to develop inhibitors specific to individual HDACs as more promising agents for cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/metabolismo , Neoplasias/enzimología , Acetilación/efectos de los fármacos , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Ciclo Celular/fisiología , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Humanos , Estructura Molecular , Neoplasias/tratamiento farmacológico
14.
EMBO J ; 21(24): 6820-31, 2002 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-12486003

RESUMEN

Trichostatin A (TSA) inhibits all histone deacetylases (HDACs) of both class I and II, whereas trapoxin (TPX) cannot inhibit HDAC6, a cytoplasmic member of class II HDACs. We took advantage of this differential sensitivity of HDAC6 to TSA and TPX to identify its substrates. Using this approach, alpha-tubulin was identified as an HDAC6 substrate. HDAC6 deacetylated alpha-tubulin both in vivo and in vitro. Our investigations suggest that HDAC6 controls the stability of a dynamic pool of microtubules. Indeed, we found that highly acetylated microtubules observed after TSA treatment exhibited delayed drug-induced depolymerization and that HDAC6 overexpression prompted their induced depolymerization. Depolymerized tubulin was rapidly deacetylated in vivo, whereas tubulin acetylation occurred only after polymerization. We therefore suggest that acetylation and deacetylation are coupled to the microtubule turnover and that HDAC6 plays a key regulatory role in the stability of the dynamic microtubules.


Asunto(s)
Histona Desacetilasas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Acetilación , Animales , Antineoplásicos Fitogénicos/farmacología , Demecolcina/farmacología , Etanol/farmacología , Histona Desacetilasa 6 , Immunoblotting , Ratones , Microscopía Fluorescente , Células 3T3 NIH , Péptidos/química , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA